clwn.net
当前位置:首页 >> (%1)^n/n^2收敛 >>

(%1)^n/n^2收敛

R=lim(n->∞)(1/n2^n)/(1/(n+1)2^(n+1)) =2 -2

un=1/n²是个正项级数 从第二项开始1/n²<1/(n-1)n=1/(n-1)-1/n 所以这个级数是收敛的。

如图所示: 前者绝对收敛,后者发散,所以加起来的结果也是发散。

原级数取绝对值后是正项级数,正项级数通项小于一个另一个收敛的正项级数(1/n^2),自己必收敛。所以原级数绝对收敛,原级数收敛。

条件收敛。 ∑(-1)^n×(2+n)/n2 是交错级数,令U_n=(2+n)/n2,满足 U_n→0(当n→∞时)又U_n+1/U_n = [(2+n+1)/(n+1)2]/[(2+n)/n2] = (n3+3n2)/(n3+4n2+5n+2) < 1 则 U_n+1 U_n 由莱布尼茨审敛法知 ∑(-1)^n×(2+n)/n2 收敛。而 ∑|(-1)^n×(2+n)/...

级数收敛性问题

由于1/2^(1/n)→1,通项不趋于0,违反了级数收敛的必要条件,所以级数是发散的。

你好!答案如图所示: 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。

首先,收敛半径一般很好求,直接套用公式:幂级数的通项,后一项u(n+1)除以u(n),再求极限,此极限就是收敛半径。然后,判断端点处幂级数是否收敛,也就是根据刚才算出来的收敛半径,你会得到两个端点,直接带进去,从而得到收敛域。

首先要注意, 你写的in应该是ln, 这种完全是低级错误 显然这个级数不可能绝对收敛, 因为n足够大时(ln n)^2/n>1/n, 而sum 1/n已经发散了 然后证明sum(-1)^n(ln n)^2/n收敛, 也就是条件收敛, 这可以用Abel--Dirichlet判别法: 令a_n=(-1)^n/n^{1/2},...

网站首页 | 网站地图
All rights reserved Powered by www.clwn.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com